Fujiku	Rev.DATE Jun. 11, 2012 Est.DATE Oct.01, 2001
	<u>NO. V- 7585(C)</u>
	Messrs.
	SPECIFICATION Integrated Pressure Sensor
Model No.:	XFPMC-250KPAR
Distributor :	
	Project:
	Reference:
	O. Hitamuna
	Fujikura Ltd.

1. General;

This document details the performance specifications of FUJIKURA's XFPMC-250KPAR, high level output, on-chip signal conditioned, temperature compensated and calibrated pressure transducers.

2. Principle;

FUJIKURA's integrated semiconductor pressure sensor has four pressure sensitive piezoresistors which are formed on the diaphragm surface of a silicon chip. This chip includes a constant current drive circuit, signal amplification circuitry and resistors for calibration of offset and sensitivity and temperature compensation. These are achieved using silicon planer technique.

When the applied pressure deforms the diaphragm, the piezoresistors change their resistance due to the piezoresistance effect. The resistance change of the four resisters, which constitute a whetstone bridge circuit, results in a pressure proportional voltage because there is an internally supplied constant current excitation. The surrounding circuit then amplifies the low-level voltage to provide a linear, repeatable high-level output voltage.

3. Pressure range & rating;

Model	Rated (Measureable) pressure range
XFPMC-250KPAR	20 ~ 250 kPa · Absolute

4. Package outline dimensions, Electrical pin connections, Marking and Weight; Refer the attached drawings.

The following table shows the drawing No.

Model Package outline dimensions		Electrical pin connections	Marking
XFPMC-250KPAR	No.9-751-090	No.9-751-051	No.9-751-089

Weight	approximately 1.2g
--------	--------------------

Table shown below is revision records of this specification

Rev.3	12/6/11	O. Kitamura	Pressure media	(C)
Rev.2	02/5/07	H. Nishida	Maximum load pressure 500kPa => 600kPa	(B)
Rev.1	02/4/01	H. Nishida	Revise accuracy	(A)
Est.	01/10/1	M.Sato		
	Date	Name	Comments	Remark

5. Absolute maximum rating;

Item	Symbol	Rating	Unit
Maximum load pressure	Pmax+	600 (B)	kPa•abs.
Maximum input voltage	Vccmax	8	VDC
Compensated temperature range	Topt1	0 ~ 85	°C
Operating temperature range	Topt2	-40 ~ 125	°C
Storage temperature range	Tstg	-40 ~ 125	°C
Insulation durability	—	AC500V, 1minute.	
Insulation impedance	_	100MΩ min. (DC500V)	

6. Recommended operating conditions;

Item	Symbol	Condition	Unit
Rated pressure	Popt	20 ~ 250	kPa∙abs.
Type of pressure	—	Absolute	
Pressure media	_	Media compatible with LPG&CNG (C)	
Supply Voltage (const.)	Vcc	5.0±0.25	VDC

7. Electrical characteristics;

(Vcc=5VDC constant, ambient temperature Ta = 25° C)

Item	Symbol	Rating	Note
Power consumption	Icc	10 mA max.	
Output impedance	Imp	10Ω max.	
Source current	Isource	0.2 mA max.	
Sink current	Isink	2mA max.	
Offset voltage	Voff	0.2±0.1125V	※ 1
Output voltage at full scale	Vfs	4.7±0.1125V	※ 1
Output span voltage	SV	4.5 V	
Accuracy	Error	±5kPa (20~140kPa) ±3.5% reading (140~250kPa)	※ 1,2 (A)
Response time	Tr	1 ms. typ.	※ 3

Notes; 1) The error excludes the ratio metric effect of changes in input voltage. The output of XFPM sensors is ratio metric within this specified excitation range of 4.75 to 5.25 volts.

See transfer function as follows.

2) Accuracy consists of the following: Non-linearity, temperature errors over the temperature range 0°C to 85°C, pressure hysteresis and calibration error (sensitivity and offset) in the pressure range between 20kPa-abs and 250kPa-abs.

3) Response time is defined as the time for the change in output voltage from 10% to 90% of its final value when the input pressure make a step change.

Figure. 1

8. Transfer Function;

Vout = Vs × (P× α + β)±(Pressure Error × Temperature Error Multiplier × α × Vs)

 $Vs = 5.0 \pm 5\%$ (V): As above equation, the output voltage (Vout) depends on the power supply voltage Vs (retiometric) within +/-5% of Vs change. P = Input Pressure (kPa·Absolute)

年月日 DATE

REVISIONS

変更者 B Y

 \diamond

MARK

変更

承認 A P P R O V E D K.NURI

設計DESIGNED BY

M.Sato

フジクラ Fujikura Ltd. Tokyo Japan ΒY

